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Introduction

Conventional analysis of breast cancer specimens has largely been
based on the microscopic appearance of the tumor. Surprisingly, the
microscopic and molecular analyses of tissue have ignored color, a
potentially tremendous source of information. Preliminary data
suggests that the information content of the spectra of tissue is as
high, or higher than that obtained from conventional spatial
morphology. Recently, the combination of new optical technologies
(spectral imaging) and vastly improved computer power has evolved
such that quantitative spectral analysis can be done on each pixel
of a complex histologic image. The purpose of this project was to
test the hypothesis that spectral analysis will provide diagnostic
and prognostic information beyond that attainable from conventional
morphology using the same starting material, a stained histology or
cytology slide. To test that hypothesis we proposed a three-fold
approach, First, we will determine the ability of spectral analysis
to distinguish benign from malignant breast tumors. Secondly, we
will determine if spectral information can segment patient cohorts
based on outcome (in a manner analogous to the way conventional
morphology uses histologic and nuclear grade). Finally, we will
assess the whether the spectral signatures can be used in a broader
fashion to aid diagnosis in cytologic specimens.

Body

The original approved statement of work was as follows:

Tasks/Aims:
Aim 1: To use spectral analysis to classify benign from malignant
in breast tissue specimens
Aim 2: To use spectral analysis to attempt to stratify breast
cancers with respect to outcome in a manner comparable to
histologic/nuclear grade, clinical stage, or prognostic marker
results.
Aim 3. To use spectral signatures to classify cytologic breast fine
needle aspiration specimens.

Year 1:
1. Construct benign/malignant tissue array from existing tissue
collections using approximately 250 cases of breast cancer and
associated normal tissue. Assemble associated databases.
2. Hire fellow and train on spectral analysis software.
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3. Begin pilot analysis of breast tissue, defining benign/malignant
spectral signatures.
4. Select and/or prepare cytologic FNA specimens for Aim 3 cohort.

Year 2:
1. Collect and analyze data on benign/malignant array and define
spectral signatures.
2. Completion of preliminary work and publication of first
description of methods for spectral-based pathologic analysis.
3. Begin analysis of the classification potential of spectral
signatures by collection of spectral data from arrays where the
stage, grade, and outcome information is used in selection of
machine training regions. This will probably include integration
and further training on new software (as it is developed)
4. Optimization/standardization of staining protocols for cytology
specimens.
5. Collection of spectral data and data analysis of control
cytologic specimens.

Year 3:
1. Completion and publication of first efforts on spectral
classification.
2. Continuation of analysis of the classifying capacity of spectral
signatures by optimization of the information used in selection of
machine training regions. This may include integration of new
software as it is developed.
3. Application of spectral signature to cytologic specimens to
attempt to stratify on the basis of benign vs malignant, but then
also to classify "atypical" cases based on their spectral profile.
This may also require further training on cytology-specific
modifications of the software.

To date we have completed nearly all of the tasks targeted for
years one and two and made some progress on other tasks.
Specifically, benign and malignant breast cancer tissue
microarrays have been constructed and the relevant clinical
follow-up information has been collected. Raj Jaganath learned to
use the VarispecTM device and software and collected image stacks
on a 20 benign and malignant spots. He was trained and assisted
in this effort by Dr. Richard Levenson, a key consultant to the
project. The images were reviewed and annotated by Tolgay Ocal, a
collaborating expert breast pathologist, then sent to Neal Harvey
at Los Alamos National Labs for Genie-based software analysis.
GENIE is Unix-based software produced at Los Alamos, based on the
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genetic algorithm concept using both spatial and spectral data as
the computational basis. The analysis software is not yet usable
by general pathologist. However, Dr. Harvey used the annotations
of Dr. Ocal to define normal from malignant and then constructed
training sets based on the spectral profiles of a series of spots.
Then a second series of spots was selected as a test set. The
result was that over 87% of all cancerous nuclei pixels were
correctly identified while less than 7% of normal tissue was
incorrectly labeled as cancer. For images that contained only
normal tissue, on average, GENIE incorrectly labeled less than 1%
of pixels as cancer. Thus, although this is preliminary data, it
is very promising. It has been presented at the SPIE Biomedical
Imaging Conference of 2003 and published in the meeting
proceedings. The publication is included in the appendix. In
follow up to this study, Dr. Angeletti has collected images from a
much larger series of benign and malignant spots from these arrays
to extend this study. He collected multispectral images (100 X)
from selected cores (8 breast carcinoma and 6 benign breast
tissue) in the slides at 420 nm to 700 nm (10-nm intervals) using
a BH-2 Olympus light microscope (Olympus America, Melville, New
York) equipped with a CRI VariSpec Tm and VIS2-CM liquid crystal
tunable filter (CRI, Woburn MA). The tunable filter was coupled to
a Retiga 1300 monochrome CCD camera (Quantitative Imaging,
Burnaby, British Columbia). Both CCD camera and VariSpec were
controlled by CRI acquisition software (CRI, Woburn,
Massachusetts). Exposure time for each slide and wavelength was
calculated prior to each acquisition. Background information was
subtracted by acquiring an area with no cells (one per slide) and
flat-fielding over the area of interest. Digital images were
produced as arrays of 896 by 768 pixels at 8-bit resolution.

Next he used the GENIE software for training and "chromosome"
generation. Training image data was introduced into the GENIE
analysis by means of the ALADDIN Java-based graphic tool. ALADDIN
allows the analyst to select areas to be considered in the
training session as "feature" and "non-feature" by manually
painting those areas as a colored overlay (green and red,
respectively). The learning system parameters can be modified in
terms of number of chromosomes per generation, maximum number of
genes in each algorithm, number of generation cycles, mutation
rate, recombination rate, and end-point fitness goal.
Detection of malignant cells using GENIE "chromosomes":
Multispectral image data from the test sets was subjected to
mathematical transformation by means of algorithms (chromosomes)

6



DAMD-17-02-1-0634 Final Report PI: D. Rimm
previously generated in the training process. The modified result
images could be viewed as white (feature) and black (non-feature).
Since each image contained information of one core only, which are
approximately of the same diameter, scoring of the GENIE result
images was done by counting the number of pixels recognized as
"feature" in the whole image. ROC curves were constructed on
Excel Analyze-it® software (Leeds, England) . Combined sensitivity
and specificity were calculated using increasing levels of GENIE
Index as cut off values.

GENIE training was performed on the 14 cores discussed above,
including 8 microarray cores containing breast carcinoma and 6
microarray cores containing benign breast tissue obtained from
three different microarray blocks. All cores corresponded to
different surgical pathology cases. In addition their images were
acquired using four separate slides that were stained on different
dates, in order to minimize staining bias. One best chromosome, #
035926, was generated with fitness towards the training set of
904.35. The sequence of this chromosome was [IFLTE rD20 rD19 rD10
rD26 wS0] [LAWS rS0 wS3 2 4 0] [OPENCLOSE rD24 wS1 4 1] [ASFOPCL
rS3

wS3 1 1] [OPENCLOSE rDl4 wS2 4 1] [ASF_CLOP rDl6 wS0 10 3]. This
chromosome initially performs a logical operation IFLTE (if less
than else) on data planes 20, 19, 10 and 26 writing the result on
scratch plane 0. LAWS, OPENCLOSE, ASF OPCL and ASFCLOP are
textural operators that perform neighborhood operations on single
planes analyzing pixel value distribution on areas defined by a

Benign Carcinoma
Original Image GENIE Result Imago Original Image GENIE Result Image

At7
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structuring element. Chromosome # 035926 was tested against a
Figure 1: Images of the TMA cores used for GENIE training for
benign (left) and malignant (right). The GENIE Result Image shows
white pixels where the image meets the criteria for malignancy.

validation cohort containing 36 cores (20 containing breast
carcinoma and 16 containing benign breast tissue) from three
different breast tissue microarrays, stained on seven different
dates. Examples of the results images are shown in Figure 1.
Scoring of the results was done by comparing the amount of pixels
assigned as feature (white). Chromosome # 035926 correctly
identified most of the cores containing breast carcinoma, with a
highest combined sensitivity and specificity of 90 % and 93 %,
using 115,000 pixels as the cutoff point. An ROC curve was
construed, that showed an area under the curve of 0.969 (Figure2).

With this highly accurate 1

result, we were encouraged 0.9

to assess the value of this 0.8

technology to distinguish
on the basis of stage or
outcome. We selected 50 No discrminafon

cases of node negative - 0 ---- Chromosome 035926

breast cancer and 50 cases 0.4

of node positive breast 0.3

cancer for analysis.
Images were collected and a 0.1
GENIE chromosome generated
for a node negative 0 0.2 0.4 0.6 0.8 1

profile. This was then I -Specificity (false positives)

tested on a unique set of TMA
spots. The results were very Figure 2. An ROC curve of the
disappointing in that GENIE discrimination of benign from
was no better than random for malignant is shown below.
distinction of the node This shows very good accuracy
negative vs the node positive for distinguishing benign from
cases. While this effort was mallanant.
somewhat of a "home run" experiment, to find association with the
best prognostic measure in breast Cancer, we have now scaled back
and are beginning efforts to test the ability to categorize the
specimens by nuclear or histologic grade. These studies will
await future funding.
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Toward to goals of aim 3, a series of 80 breast FNA specimens were
prepared for analysis by prepping and staining the specimens in
identical manner. Images have been collected from this series of
FNAs and analysis showed that the images were unsuitable for
analysis for technical reasons.

For the purposes of testing of the GENIE system on cytology
specimens, we collected a series of urine specimens. He chose
these specimens since they are much more plentiful than breast
FNAs and provided an easy-to-use test platform in preparation for
the more complex analysis required for breast FNAs.

Using these specimens, he has directly addressed the staining
issues raised in SOW point 4 for year 2. We have evaluated the
effect of staining on spectral properties, both across years and
batches at our own institution as well as between institutions, in
a collaboration forged with Andrew Fisher at the University of
Massachusetts in Worcester. We selected and process of hundreds
of cells from three data sets: 1) Yale specimens from 1996-1997,

2) Yale specimens from i998-1999 and 3) UMass specimens from
2003-2004. Using a GENIE derived chromosome to define malignant
cells, based on a fraction of the '96-'97 set, we found a
sensitivities and specificities in the 85-95% range for correct
assignment of malignant cells, independent of year of acquisition
or institution. (see table 1) This result suggests that we should
be able to use to standard Pap stain for breast cancer specimens
and that the information content of those specimens should be
sufficient for similar spectral cytologic analysis.

Table 1

Data Set N Benign N Malignant Sensitivity Specificity

Yale 96-97 308 122 91% 95%
Yale 98-99 190 178 87% 96%
UMASS 03-04 121 40 85% 97%

The next step was the analysis of "atypical" specimens. Both
Breast and urinary cytology suffer from the fact that in 25% or
more of the specimens, the morphologic information is insufficient
for a definitive diagnosis. The result is that the pathologist
calls these cases "atypical" which is not very helpful in the next
steps of patient management. One of the goals of this technology
is to eliminate the "atypical" diagnosis by the addition of
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spectral information. Again, this was piloted in urine specimens
due to the difficulty in obtaining breast FNAs. Here we selected
a series of cases where the cytopathologist made the diagnosis of
atypical and the urologist then decided to biopsy the patient. We
used the histological biopsy result as the criterion standard and
constructed a training set of atypical urine specimens adjudicated
by cystoscopic biopsy. We found we were able to generate a GENIE
chromosome that could predict the biopsy result with 70-80%
accuracy. This data has under review in laboratory investigation.
(attached as an appendix).

Key Research Accomplishments:

1. Completion of Initial Breast Tissue Microarrays for Malignant vs
Normal and Outcome-based analysis

2. Completion of Spectral Image stack acquisition for Malignant vs
Normal series.

3. Completion of Analysis of Malignant vs Normal series and
construction of training and out-of-training set analyses

4. Completion of Analysis of Malignant vs Normal larger scale
analysis including prognostic/outcomes information

5. Collection of cases for Breast FNA studies

6. Completion of standardization and testing of cytology specimen
and staining parameters.

7. Completion of a series of urine specimens as a model for the
breast cancer studies

8. Adjudication of atypical cytology specimens by the combination
of spectral and spatial information using GENIE algorithms

Reportable outcomes:

An abstract, which was subsequent published in the SPIE proceedings
describes the combination of spectral and spatial analysis showing
good classifying ability to distinguish normal breast tissue from
malignant tissue (see appendix).

A paper has been published in the journal Cancer Cytopathology
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related to the spectral properties of cytology specimens using'urine

specimens as a model system, a second manuscript is submitted using

similar material with the addition of the GENIE system for analysis

(see appendix).

Conclusions:

Preliminary results suggest there is sufficient information

attainable from the combination of spectral and spatial data, using

genetic algorithms, to classify malignancy in breast cancer. We

have also now tested the system on Papanicoulaou stained cytology

specimens. We have shown that the information obtained is from this

material is robust and independent of stain batch or even

institution. We are now facing the more difficult challenges of

distinguishing benign lesions from malignant lesions and correlation

of spectral/spatial features with tumor behavior. This grant

provided sufficient preliminary data for three subsequent grant

proposals. The first grant, to look at premalignant random fine

needle aspirations, has been funded and efforts will start in the

next month or so. This is a direct follow up of the Army funded

effort. Two further grants a re pending based on the data from this

effort. One is an NIH RO-1 grant to assess urine cytology specimens

using spectral imaging and another is an RO-1 that proposes

adjudication of thyroid FNAs using the spectral-spatial technology.

References:

See original proposal and reference sections of appended

manuscripts.
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APPENDIX 1

Investigation of Automated Feature Extraction Techniques for
Applications in Cancer Detection from Multispectral

Histopathology Images

Neal R. Harvey*a , Richard M. Levensonb, David L. Rimmc
aNIS-2, Los Alamos National Laboratory, Los Alamos, NM, 87545;

bCambridge Research and Instrumentation Inc., 35-B Cabot Road Woburn, MA 01801;

cDept. of Pathology, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520

ABSTRACT

Recent developments in imaging technology mean that it is now possible to obtain high-resolution histological image
data at multiple wavelengths. This allows pathologists to image specimens over a full spectrum, thereby revealing
(often subtle) distinctions between different types of tissue. With this type of data, the spectral content of the
specimens, combined with quantitative spatial feature characterization may make it possible not only to identify the
presence of an abnormality, but also to classify it accurately. However, such are the quantities and complexities of
these data, that without new automated techniques to assist in the data analysis, the information contained in the
data will remain inaccessible to those who need it. We investigate the application of a recently developed system
for the automated analysis of multi-/hyper-spectral satellite image data to the problem of cancer detection from
multispectral histopathology image data. The system provides a means for a human expert to provide training
data simply by highlighting regions in an image using a computer mouse. Application of these feature extraction
techniques to examples of both training and out-of-training-sample data demonstrate that these, as yet unoptimized,
techniques already show promise in the discrimination between benign and malignant cells from a variety of samples.

Keywords: multispectral, histopathology, classification, cancer, machine learning

1. INTRODUCTION

In the field of pathology, accuracy in tissue diagnosis is essential to ensure that patients receive the most appropriate,
most cost-effective and least toxic therapies. At present, the state of the art for the determination of a pathological
diagnosis relies on manual, morphology based analysis of tissue sections, a method largely unchanged since the nine-
teenth century. Relying largely upon visual pattern recognition of tissue samples, the entire process is subjective,
somewhat irreproducible and inefficient in extracting all the information contained in the specimen, especially as
related to prognosis and therapy guidance. Recent advances in optical technologies, coupled with improved computer
power, mean that it is now possible to extract information beyond the capabilities of the human visual system. We
can extend beyond the limitations of the human eye's acuity and the visible spectrum and obtain high-resolution
histological image data at multiple wavelengths. These data have the potential for revealing (often subtle) distinc-
tions between different types of tissue that could be useful in determining objective, reproducible disease-classifying
information. The spectral content by itself contains a great deal of information, whose value increases greatly when
it is combined with the spatial information available. Unfortunately, such are the quantities and complexities of
these data, that without new automated techniques to assist in the data analysis, the useful information contained
in the data may remain largely inaccessible. Integration of the spectral and spatial information contained in these
images using sophisticated but robust statistical techniques should make it possible to obtain disease classifications
that are more accurate, objective and reproducible than is possible with existing manual methods.

Here we describe preliminary experiments in which we investigate the application of a recently developed system
for the automated analysis of multi-/hyper-spectral satellite and aerial image data to the problem of cancer detection
from multispectral histopathology image data. The system, known as GENIE, was originally developed for the
military and intelligence community, to provide a means to develop automated feature extraction tools for multi-
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and hyper-spectral aerial and satellite imagery. The reason for GENIE's development is that while there exist highly-
skilled image analysts who are expert at identifying features of interest from complex image data sets, they are limited
in number and, being human, have limited capabilities: they have a limited spectral capability (3 channels) and rate
at which they can analyze imagery. So, in order to go beyond these limitations, there is a need to develop systems
in which the power of modern computers and machine-learning techniques can be brought to bear. Although human
analysts are extremely good at finding features of interest within imagery, they are not so good at describing exactly
how they are able to do this, and hence, hand-coding algorithms designed for specific tasks is a difficult and often long
and expensive process. Thus, we have developed a system whereby a human expert can teach a computer to create
algorithms to perform these functions, via a simple graphical user interface, in which a human provides training data
to the computer by simply highlighting examples of the features of interest on a computer screen.

One can make certain comparisons between the military and intelligence community and the medical (specfically,
pathology) community. They both have a great deal of complex, high-dimensional data (multi- and hyper-spectral
satellite and aerial imagery vs multi-spectral histopathology imagery) that they wish to analyze. They both wish
to find features of interest within complex backgrounds (e.g. military targets vs cancer cells) and they both have
human experts available who are highly skilled at identifying these features (image analysts vs pathologists), but
who have limitations with regard to the complexity and quantity of the data which they can analyze. Bearing these
similarities in mind, it is not unreasonable to investigate the application of a software system originally developed to
address remote-sensing problems to a set of problems in the medical arena.

2. SPECTRAL IMAGING

Spectral imaging microscopy represents a technological advance over visual or RGB-camera-based analyses, provid-
ing images at multiple wavelengths and generating precise optical spectra at every pixel. These rich data sets have
applications in surgical pathology, multicolor fluorescence and immunohistochemistry. There now exists a variety
of technologies for use in combination with microscopy, including tunable filters, Fourier-transform interferometry,
line-scanning prism or gratings-based devices, computed tomography, and others based on polarization effects. Math-
ematical approaches to these complex data sets may then be used to extract maximum possible information from
the resulting data.

In the experiments described here, a VariSpec(tm) liquid crystal tunable filter devices (CRI, Inc.)"4 was used.
This device can transmit in a number of wavelength ranges (e.g., 400-720 nm or 850-1800 mn with bandwidths
typically in the 7 to 20-nm range, although bandwidths as narrow as 0.1 nm have been achieved).

3. AUTOMATED IMAGE ANALYSIS: OVERVIEW OF THE GENIE SYSTEM

The details of GENIE's algorithmic structure have been described previously in the literature, 1-7 so, in the interests
of brevity, we provide only a brief overview of our system.

Our particular interest is the pixel-by-pixel classification of multi-spectral images, not only to locate and iden-
tify but also to delineate particular features of interest. For the experiments described here, we are interested in
distinguishing cancerous (malignant) cells against the background (which includes normal benign cells). Due to
the quantities and complexities of the multispectral data with which we are working, the hand-coding of suitable
feature-detection algorithms is impractical. We therefore use a supervised learning approach that can, using only a
few hand-classified training images, generate image processing pipelines that are capable of distinguishing features
of interest from the background. We remark that our approach here is to consider the two-class problem: although
many classification applications require the segmentation of an image into a larger number of distinct classes, for
our particular problem, our main interest is the simpler problem of identifying a single class (cancer) against a
background of "other" classes. GENIE does possess the capability for performing multiple-class classification,' but
here we did not make use of that functionality.

GENIE employs a classic evolutionary paradigm: a population is maintained of candidate solutions (chromo-
somes), each composed of interchangeable parts (genes), and each assessed and assigned a scalar fitness value,
based on how well it performs the desired task. After fitness determination, the evolutionary operators of selection,
crossover and mutation are applied to the population and the entire process of fitness evaluation, selection, crossover
and mutation is iterated until some stopping condition is satisfied.



3.1. Environment

The environment for each individual in the population consists of data planes, each of these planes corresponding to
a separate spectral channel in the original multi-spectral image, together with a weight plane and a feature plane.
The weight plane identifies those pixels to be used in training - these are all the pixels for which the analyst has
provided a class label. The actual delineation of separate feature/class pixels is given by the feature plane.

3.2. Chromosomes and Genes

Each individual chromosome in the population consists of a fixed-length string of genes. Each gene in GENIE
corresponds to a primitive image processing operation. Therefore the entire chromosome describes an algorithm
consisting of a sequence of primitive image processing operations.

Each gene used in GENIE takes one or more distinct image planes as input, and produces one or more image
planes as output. Input can be taken from any of the data planes in the training data image cube. Output is written
to any of a small number of scratch planes - temporary workspaces where an image plane can be stored. Genes can
also take input from scratch planes, but only if that scratch plane has been written to by another gene earlier in the
chromosome sequence.

Our "gene pool" is composed of a set of primitive image processing operators which we consider useful. These
include spectral, spatial, logical and thresholding operators.

3.3. Backends

Final classification requires that the algorithm produce a single (discrete) scalar output plane, which identifies, for
every pixel, the class to which it has been assigned. We have found it advantageous to adopt a hybrid approach
which applies a conventional supervised classifier to a (sub)set of scratch and data planes to produce the final output
plane.

To do this, we first select a subset of the scratch and data planes to be answer planes. The conventional supervised
classifier "backend" uses the answer planes as input and produces a final output classification plane; in principle, we
can use any supervised classification technique as the backend, but for the experiments reported here, we used the
Fisher linear discriminant 9 as the backend.

3.4. Fitness Evaluation

The fitness of a candidate solution is given by the degree of agreement between the final classification output plane
and the training data. It is based on a simple ratio of the total number of incorrectly classified training pixels over
all classes to the total number of training pixels over all classes. If we denote the detection rate (fraction of "true"
pixels classified correctly) as Rd and the false alarm rate (fraction of "false" pixels classified incorrectly) as Rf, then
the fitness F of a candidate solution is given by

F = 500(Rd + (1 - Rf)). (1)

Thus, a fitness of 1000 indicates a perfect classification result. This fitness score gives equal weighting to type
I (true pixel incorrectly labelled as false) and type II (false pixel incorrectly labelled as true) errors. Note a fitness
score of 500 can be trivially achieved with a classifier that identifies all pixels as true (or all pixels as false).

4. EXPERIMENTS: CANCER DETECTION

4.1. Tasks

We set GENIE the task of detecting cancerous nuclei in multispectral breast tissue image data. Thus we have a
classification problem with two classes: (1) cancerous nuclei and (2) everything else. Therefore, GENIE was given
the task of searching for algorithms that would be able to label each pixel within an image as belonging to one or
other of these two classes. While our approach here was to consider the two-class problem, we are aware that other
applications might require the segmentation of an image into a larger number of distinct classes. In fact; GENIE is
capable of addressing multiple-class problems.8 However, for this study, we only consider the simpler problem of

'identifying a single class against a background of "other" classes.



4.2. Multispectral data

The construction of tissue microarrays (TMAs) has been previously described and recently reviewed.'l-1 3 Briefly,
formalin-fixed, paraffin-embedded tissue blocks containing breast cancer were retrieved from the archives of the Yale
University Department of Pathology. Areas of invasive carcinoma were identified on corresponding hematoxylin-
eosin stained slides and the tissue blocks were cored and transferred to a recipient "master" block using a Tissue
Microarrayer (Beecher Instruments, Silver Spring, MD). Each core is 0.6 mm wide, spaced 0.7-0.8 mm apart. After
cutting of the recipient block and transfer with an adhesive tape to coated slides for subsequent UV cross-linkage
(Instrumedics, Inc, Hackensack, NJ), the slides were dipped in a layer of paraffin in order to prevent oxidation (24).
Slides were stained with hematoxylin and eosin, were evaluated for quality of the section and then selected for spectral
imaging analysis. For these experiments, examples of both breast cancer and normal tissue were selected.

Images were collected at 10 nm intervals between 420 nm-700 nm using a CRI (Cambridge Research Instru-
ments1") VariSpec filter, CRI PanKroma acquisition software, a light microscope, and a QImaging Retiga megapixel
digital monochrome camera. The process is semi-automated. The image on the CCD is brought into focus while
the tunable filter is tuned to 550 nm (a high-contrast part of the spectrum for H & E samples). An autoexpose
function then steps the filter through the spectral range, calculating exposure times wavelength-by-wavelength that
will cause the brightest pixels to nearly fill their dynamic range (250 counts for an 8-bit, 256-level sensor). Using
these exposure times, a stack of images is automatically collected, with the computer tuning the filter and acquiring
an image at every wavelength step, resulting in stacks of 29 images for each sample (tissue microarray dot). To
remove optical irregularities in the image train (dust on the CCD window for example) and also some variations in
intensity across the liquid crystal filter, the images are flat-fielded by dividing (and normalizing for intensity) each
plane of the sample image by the corresponding plane of a white stack obtained from a clear area on the same slide.
The image stack, consisting of a series of tif images sequentially numbered, is converted into a single ENVI-format
data file with separate header, and transferred to Los Alamos via ftp.

4.3. Training data

In order to provide training data, several images were selected, some containing a mixture of both cancerous and
normal tissue and some containing only normal, healthy tissue. Of these images, sub-regions were selected that
contained suitably representative samples of pixels from both classes: (1) cancerous nuclei and (2) "everything else".
For the cancerous nuclei training samples, regions that had a high density of cancerous nuclei were selected. For
the "everything else" training samples; regions were selected that had combinations of the kinds of features that
are present in that somewhat-broad class. We were careful to select some regions of normal tissue that contained a
high density of normal, healthy nuclei, in order to provide some training data samples that could assist GENIE in
evolving an algorithm able to successfully disambiguate cancerous from healthy nuclei.

Fig. 1 shows examples of the original image data and the associated training data (labels) provided by the expert.
Fig. 1 (a) shows a true color image of one of the images obtained for breast tissue containing cancer. Fig. 1 (b)
shows the training data provided by the expert for the data shown in Fig. 1 (a). Pixels labelled as containing cancer
are colored green and pixels labelled as normal are colored red. The training data p(red and green) image has been
overlaid onto a gray-scale representation of the true-color image shown in Fig. 1 (a). The region enclosing only those
pixels in the image used for training is shown by the bounding box. Fig. 1 (c) shows a true color image of one of
the images obtained for breast tissue containing only normal tissue. Fig. 1 (d) shows the training data provided by
the expert for the data shown in Fig. 1 (c). As with Fig. 1 (b), pixels labelled as containing cancer are colored green
and pixels labelled as normal are colored red (note that there are no green pixels in this image). The training data
image has been overlaid onto a gray-scale representation of the true-color image shown in Fig. 1 (c), and the region
enclosing only those pixels in the image used for training is shown by the bounding box.

5. RESULTS

Fig. 2 shows the results of applying the classification algorithm found by GENIE during its training, to some data.
Fig. 2 shows the classification results of applying the algorithm to the data shown in Fig. 1 (a). The pixels labelled
by the algorithm as cancer are colored green and those labelled as normal are colored red. The resulting classification
(red and green) image has been overlaid onto a gray-scale image of the original data, just as for the training data
shown in Fig. 1 (b). Fig. 2 (b) shows a true-color image of a data set containing cancerous and normal tissue that
was not seen during training. Fig. 2 (c) shows a true-color image of a data set containing only normal tissue that



(a) (b)
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Figure 1. Breast: (a) True color image of one of the data sets obtained from breast tissue containing cancer; (b)
Training data provided from this image: Green = Feature (i.e. Cancer), Red = Not Feature (i.e. Non-Cancer); (c)
True color image of one of the data sets obtained from breast tissue containing only healthy (non-cancerous) tissue;
(d) Training data provided from this image: Notice there are no Green pixels, due to there being no cancer in the

image.

was not seen during training. Fig. 2 (d) shows the classification results of applying the algorithm to the data shown
in Fig. 1 (c). As before, the pixels labelled by the algorithm as cancer are colored green and those labelled as normal

are colored red, and the resulting classification image has been overlaid onto a gray-scale image of the original data.

Table 1 shows the performance of the algorithm found by GENIE during training, as relates to the training data
and the entire images, from which the training data was extracted. Column 1 shows the image name. Column 2
shows the number of pixels labelled as cancer that were provided in the training data for each image. Column 3
shows the number of pixels labelled as non-cancer (normal) that were provided in the training data for each image.
Column 4 shows the detection rate, DR, (percentage of pixels labelled as cancer in the training data that were
labelled correctly as cancer by the algorithm found by GENIE during training) for each image in the training data
set. Column 5 shows the false-alarm rate, FAR (percentage of pixels labelled as normal in the training data that

were incorrectly labelled as cancer by the algorithm found by GENIE during training) for each image in the training
data set. Column 6 shows the total number of pixels labelled as canc~er by GENIE's algorithm for the entire image

from which the training data was extracted.

Table 2 shows the performance of the algorithm found by GENIE during training, as relates to some testing data
- i.e. some image data which was not seen during training (out-of-training-sample data). For these images, in order
to be able to assess GENIE's performance in a quantitative manner, an expert provided ground truth for regions in
these images, in a similar manner to that provided for the data used in training. Column 1 shows the image name.
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Figure 2. GENIE: Breast (a) Output of GENIE-derived classification algorithm found during training, applied
to raw multispectral data shown in Fig. 1 (a); (b) True color image of one of the data sets obtained from breast
tissue containing cancer, but not used during training; (c) True color image of one of the data sets obtained from
breast tissue containing only healthy (non-cancerous) tissue, but not used during training; (d) Output of GENIE-
derived classification algorithm applied to raw multispectral data shown in Fig. 1 (c); (e) Output of GENIE-derived
classification algorithm found during training, applied to raw multispectral data shown directly above in (b); (f)
Output of GENIE-derived classification algorithm found during training, applied to raw multispectral data shown
directly above in (c)

Column 2 shows the number of pixels labelled as cancer by the expert for each image. Column 3 shows the number
of pixels labelled as non-cancer (normal) for each image. Column 4 shows the detection rate (DR) for each image in
the testing data set. Column 5 shows the false-alarm rate (FAR) for each image in the testing data set. Column 6
shows the total number of pixels labelled as cancer by GENIE's algorithm for the entire image, not just the region
labelled by the expert.

Table 2 shows the performance of the algorithm found by GENIE during training, as relates to some testing data
- i.e. some image data which was not seen during tyraining (out-of-training-sample data), but for which we don't
have expert-provided ground truth. While we don't have expert-provided ground-truth on a pixel-by-pixel basis for
these images, we do know, for each image, whether it contains some cancer or whether the image has only normal
tissue. Thus, for these images we only provide the total number of pixels labelled as cancer by GENIE's algorithm
for the entire image.

6. DISCUSSION

It can be seen, both from the images shown in Fig. 2 and in Tables 1 - 3, that GENIE was able to evolve an
algorithm capable of doing a good job of discriminating cancer from non-cancer in the multispectral images used in
these experiments. For the training data, for the images that contained both cancerous and non-cancerous (normal)
tissue, GENIE was, on average, able to detect over 87% of all cancerous nuclei pixels and only incorrectly labelled less
than 7% of normal tissue as cancer. For images that contained only normal tissue, on average, GENIE incorrectly
labelled less than 1% of pixels as cancer. For testing data, for which an expert had provided ground-truth, for images
that contained a mixture of both cancerous and normal tissue, GENIE, on average, was able to correctly label more



Table 1. Performance of the GENIE-derived classification algorithm found during training applied to training-
sample data

#Labelled # Labelled Total # Pixels
Cancer Pixels Non-Cancer Pixels Labelled as Cancer

Image Name (Training) (Training) DR (%) FAR (%) in Result Image
C1-15 25230 147657 70.32 0.17 60742
C2-12 27422 134501 94.72 18.63 138568
C2-9 14871 34187 97.28 0.25 215508

Average 22508 105448 87.44 6.35 138273
N1-8 0 132880 - 0.21 4408
N2-9 0 204768 - 0.21 554
NI-1 0 243120 - 0.36 1305
N4-4 0 335616 - 2.31 18318

Average 0 229096 - 0.77 6146

Table 2. Performance of the GENIE-derived classification algorithm found during training applied to out-of-training-
sample data, for which an expert had provided labels, in order to determine out-of-sample performance

# Labelled # Labelled Total # Pixels
Cancer Pixels Non-Cancer Pixels Labelled as Cancer

Image Name (Testing) (Testing) DR (%) FAR (%) in Result
C1-2 12357 83286 48.04 7.85 94274
C2-14 7992 27960 93.23 29.61 300216
C4-9 3880 54773 96.89 18.76 205827
C5-8 4006 73325 90.84 6.99 139858

Average 7059 59836 82.25 15.80 185044
N1-2 0 1.198 x 106 - 0.15 1746
N2-7 0 1.198 x 106 - 0.66 7938
N3-9 0 1.198 x 106 - 0.64 7708
N4-5 0 1.198 x 106 - 0.14 1640

Average 0 1.198 x 106 - 0.40 4758

than 82% of cancerous nuclei pixels and labelled less than 16% of normal tissue incorrectly as cancer. For images
that contained only normal tissue, on average, GENIE incorrectly labelled less than 0.5% of pixels as cancer.

It should be noted that the non-nuclei, connective tissue surrounding the cancerous nuclei in the cancer-containing
samples is, in fact, not normal tissue. It has its own deviation from normal. It is interesting to note that the
algorithm evolved by GENIE labelled this tissue as cancerous. This is hardly surprising. The training data provided
from the cancer-containing samples consisted of mostly pixels from cancerous nuclei, with very few samples from the
surrounding stroma. However, there were plenty of training samples taken from normal, healthy stroma. Thus, with
training samples provided for two classes: malignant nuclei and normal, healthy "everything else", it is understandable
that malignant stroma would be significantly different from the training data samples provided for the normal healthy
tissue, and would thus be classified into the other "cancerous nuclei" class.

While there was a drop in GENIE's performance, from training data to testing data, for images that contained
both cancerous and normal tissue, with the average detection rate going from 87% to 82% and average false-alarm
rate going from 7% to 16%, there was actually an improvement in performance, from training data to testing data,
for images that contained only normal tissue, with the average false-alarm rate going from 3% to 0.4%.

In general, the algorithm discovered by GENIE does a very good job of discriminating cancer versus normal
tissue, both for the data provided in training and for the out-of-training-sample data. There is a large difference
(orders of magnitude) between the numbers of pixels classified as being cancer in those images containing cancer



Table 3. Performance of the GENIE-derived classification algorithm found during training applied to out-of-training-
sample data, for which no labels had been provided

Total # Pixels

Labelled as Cancer
Image Name in Result

C2-5 92385
C2-7 272119
C3-2 169649
C3-4 196517

C5-10 183402
Average 182814

N2-2 292
N2-4 1509

N3-4 686
N3-6 5348

N4-9 4107
Average 2388

compared to those images containing only normal, healthy tissue.

6.1. Further work

GENIE, as it currently stands, despite the promising results shown here, needs much modification in order to be made
more generally useful for real applications in pathology. The present suite of operators that make up GENIE's "gene
pool" are essentially those which were provided for remote-sensing applications. These operators are not necessarily
the most appropriate for the field of pathology. A more targeted group of operators developed from those already
developed for such applications in pathology and described in the literature16,17 would be a good start. In addition,
GENIE's current mode of operation, in which the classification is performed on a pixel-by-pixel basis is not ideal.
Moving to a higher-level, more object-based classification methodology, would be a better approach. Going even
further, beyond providing a simple binary classification indicating the presence or absence of cancer and providing a
more detailed classification, such as cancer grade is an additional goal. The other area that needs work is to improve
the time taken for training. At present, depending on the amount of training data provided and the complexity of
the algorithm space GENIE is set the task of searching, it can take several hours to perform a training run. We aim
to be able to reduce this training time to minutes. Our approaches to achieving this goal include parallelisation of
the genetic algorithm, 3 implementation of image processing operators in hardware (via FPGAs's) and investigation
of better, and more efficient search and classification methodologies. 19

Further work also needs to be undertaken towards a proper validation of the approach, using a far greater volume
of data than used in these experiments.

7. CONCLUSIONS

We have shown preliminary investigations into the application of a system originally developed for the automated
analysis of satellite image data to the problem of cancer detection from histopathology image data. The results of
this work shows great promise, but leaves many questions yet to be answered, and much work to be done.
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Diagnostic Classification of Urothelial Cells in
Urine Cytology Specimens Using Exclusively
Spectral Information

Rajesh Jaganath, B.S.' BACKGROUND. Although cytologic evaluation of urine specimens is a standard
Cesar Angeletti, M.D., Ph.D.1  procedure in the diagnosis and follow-up of bladder carcinoma, its sensitivity and
Richard Levenson, M.D. 2  specificity are low. Cytopathologic diagnoses are driven primarily by spatial rela-
David L. Rimm, M.D., Ph.D.1  tions or morphology. Although color enhances the pathologist's perception of the

specimen, spectral information plays a minimal role in diagnostic processes.
1Department of Pathology, Yale University School Recently, methods have been developed to capture and analyze spectral informa-
of Medicine, New Haven, Connecticut. tion from clinical specimens. In the current study, the authors determined the
2 CRI, Inc., Woburn, Massachusetts. classification value of spectral information by testing its ability to discriminate

between malignant and benign urothelial cells in cytology specimens.
METHODS. Multiple images of benign urothelial cells (n = 39) and urothelial
carcinoma cells (n = 35) were collected at serial wavelengths using a liquid crystal
tunable optical filter and composited into a mosaic using ENVI (Environment for
Visualizing Images) software. Through minimum noise fractionation and principal
component analysis, the spectral information in the mosaic was compressed into
a 29-dimensional scatter plot. The data generated were analyzed using visual and
spectral end member extraction on both the original data set and a second
independent data set (test set).
RESULTS. One area of spectral clustering in the scatter plot segmented with
carcinoma cells exclusively (100% specific), but was not present in every cell
(approximately 50%), which may indicate that these spectral profiles are present in
a subpopulation of malignant cells or at specific points of their cell cycle. Using
ENVI algorithms, the authors found that a particular classification spectrum (end
member 9) and its closest relatives identified malignant cell clusters, with a
sensitivity and specificity that reached 82% and 81%, respectively. To validate this
mechanism in a test set, a second mosaic comprised of 15 benign and 15 malignant
clusters was analyzed using end member 9, resulting in a combined sensitivity and
specificity of 73%.
CONCLUSIONS. The results of the current study demonstrate that spectral informa-
tion, in the complete absence of morphologic or spatial information, allows dis-
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ease reported among males. The majority of bladder ogy specimens to determine its ability to discriminate
tumors are urothelial carcinomas,' which arise from between benign and malignant urothelial cells.
the transitional epithelium at the mucosal surface.
Multifocality, a common feature of these neoplasias, is MATERIALS AND METHODS
responsible for the high rate of recurrence of bladder Specimen Selection
carcinoma.3 Cytologic evaluation of voided urine and Urine specimens (voided urine and bladder washings)
bladder washings is one of the standard procedures from patients with or without urothelial carcinoma
for the diagnosis and follow-up of this disease.4' 5 How- were received between 1996 and 1997. Papanicolaou-

ever, the sensitivity of these studies is low, ranging stained slides of these specimens were collected from

between 60% and 80%,6'7 and the rate of false-negative the archives in the Department of Pathology at Yale-

results is high.8 Noninvasive or low-grade tumor spec- New Haven Hospital (New Haven, CT). Up to five
imens are the greatest challenge to the cytopatholo- representative clusters in each slide were selected by a

gist, who may be forced to use ambiguous terms such board-certified cytopathologist.

as "atypical urothelial cells," which sometimes leads
to improper patient management.9"° In the last few Data Collection

years, various new tests for the detection of bladder The collection of 29 images from each selected cluster

carcinoma in urine specimens have been commercial- was performed at 10-nm wavelength intervals (be-

ized," but to our knowledge none has gained broad tween 420-700 nm) using a BH-2 Olympus light mi-

acceptance or been definitively shown to exceed the croscope (Olympus America Inc., Melville, NY)

results obtained by conventional cytology, equipped with a CRI VariSpec VIS2-CM LCTF (CRI

Cytopathologic diagnoses are driven primarily by Inc., Woburn MA). The filter wavelength was con-

spatial relations or morphology. Spectral information trolled through a CRI Varispec filter (CRI). The exit of

(namely color) is relegated to a very minor role as a the tunable filter was connected to a Qimaging Retiga

diagnostic tool. This most likely is because of the 1300 mono CCD camera (Qimaging, Bumaby, British

inability of the human eye to accurately and repro- Columbia, Canada) for the collection of processed
n simages. Both the CCD camera and the Varispec were

ducibly extract information from actual spectral prop- interfaced to a computer and controlled with CRI Pan-
erties of the stained specimen. The trichromatic the- kroma software (CRI) for image acquisition. Using this
ory of color vision"2 postulates that the human retina software, spectral imaging was performed by automat-
has receptors for red, green, and blue and that com- ically collecting images at 29 wavelengths from 420
binations of these signals will recreate any color stim- nm to 700 l n at 10-ima intervals. A band-by-band
ulus.1'3 " 4 For example, pink can be generated either by autoexposure routine was used to adjust exposures to
a mixture of white light and an orange hue, or a compensate for wavelength-sensitive variations in
mixture of red and cyan, or a mixture of violet, green, source intensity, filter transmission efficiency, and
and red. Each of these combinations has a different camera sensitivity. Band-by-band fiat-fielding was
spectroscopic signature that is not detected by the performed to compensate for unevenness in illumina-
eye. Spectral imaging is a relatively novel technique tion.
that is capable of quantitatively measuring spectra in
the visible wavelength range from digital images. Sev- Mosaic Formation
eral modalities of spectral imaging systems adaptable Spectral "stacks" for each cluster imaged were pro-
to biomedical studies have been described in the lit- cessed using ENVITM (Environment for Visualizing Im-
erature.15 A popular system is comprised of coupling a ages) software (Research Systems, Inc., Boulder, CO)
liquid crystal tunable optical filter (LCTF) with a reg- to produce a spectral mosaic containing multiple, sep-
ular light microscope.' 6 The LCTF uses electrically arately imaged clusters combined into a single com-
controlled liquid crystal elements that transmit certain posite spectral stack for the purpose of analysis. ENVI
wavelengths while blocking others and it can operate software, used for the remainder of the analyses in the
in the visible range (420-720 nanometers [nm]) at current study, was designed for use in the analysis of
intervals as narrow as 1 nm. This technology can be satellite images, but can be used for other applications
used to construct full spectral traces for each pixel in as well. In the current study cell clusters were masked
a captured image. The quantitative information gath- to exclude them from nonepithelial cells that may
ered can be used to discover associations between have been inadvertently included during image cap-
spectral signatures and biologic properties of the im- ture. These selected clusters were then combined into
aged cells or tissue specimens. In the current study, a single mosaic containing an upper portion consist-
we performed spectral analysis of routine urine cytol- ing of clusters of malignant cells only and a lower
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#I

fX FIGURE 1. Mosaic construction. (A)
Initial mosaic containing 29 overlapped

0 o spectral images (spectral cube) from 35
4 clusters of high-grade urothelial carci-

noma cells (top half) and 39 clusters of
benign urothelial cells. (B) Same mosaic

' , a • a subjected to binary masking to extract
# 4background information. (C) Minimum
4" •noise fractionation and principal compo-

JW 4 •nent analysis.

portion with clusters obtained from benign urine n-Dimensional Scatter Plot Analysis
specimens. A common white background was gener- The MNF transformed data were subjected to the
ated through data collection of an unstained Thin- ENVI pixel purity index (PPI). This process projects the
Prep® (Cytyc Corporation, Boxborough, MA) slide. data cloud along random vectors multiple times

(5000), records the values at each iteration, and selects
the most spectrally pure values. By means of the ENVI

ENVI Transforms and n-Dimensional Scatter Plot spectral angle mapping (SAM) function, all the vectors
Generation in the scatter plot were compared with each end
A binary mask based on spectral characteristics was member to determine their spectral angle, which is an
then applied to the mosaic. The spectral mask as- estimation of the similarity between them. These sim-
signed a value of "1" to all pixels with intensities ilarities can be visualized in the mosaic as a blue-pink
between 0 (black) and 220 (of 255) and a value of "0" pseudogradient. The mosaic image was then exported
to the remainder of the mosaic, corresponding to the to Adobe Photoshop (Adobe, Mountain View, CA) and
white background. The masked mosaic was then sub- forced into a three-color (magenta, cyan, black) in-
jected to a minimum noise fraction (MNF) transform dexed image. The number of magenta pixels in each
to maximize the variance within the sample set as part cluster, corresponding to the spectral profiles more
of the segmentation process attempting to separate closely related to the end member, was calculated as
("segment") the malignant, from benign clusters. The the percentage of the total number of pixels per cell
MNF transform included in the ENVI software is a cluster.
sequential two-part principal components transfor-
mation. The first transformation, based on an esti-
mated noise covariance matrix, decorrelates and RESULTS
rescales the noise in the data so that the noise has unit Figure 1A shows an image of the final mosaic contain-
variance and so that there is no correlation between ing images of cellular clusters captured from 44 urine
bands. Only the bands with data are used for further cytology specimens. Thirty-five clusters of high-grade
analysis. This was followed by a principal components urothelial carcinoma cells were positioned at the top
transformation, which generates uncorrelated output half of the mosaic and 39 cellular clusters from benign
bands, isolates noise components, and decreases the urine specimens were located on the bottom half.
dimensionality of the data sets. Uncorrelated output First, we extracted the background information
bands are found by using a new set of orthogonal axes through binary masking (Fig. 1B) and subjected the
that have their origin at the data mean but are rotated remaining image to MNF and principal component
to maximize data variance. The resulting data were analysis (PCA) (Fig. 1C). A two-dimensional projection
visualized as an n-dimensional scatter plot, with each of a higher dimensional scatter plot obtained through
coordinate representing a function of reflectance val- PCA of all the spectral profiles in the mosaic is de-
ues in each band for a given pixel. picted in Figure 2A. ENVI software allows multiple
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FIGURE 2. (A) n-Dimensional scatter plot. Each data
point represents a unique spectral profile. The high-
lighted pink spots in the upper right panel corresponds
to one area of spectral clustering. (13) Distribution of the
highlighted vectors in the scatter plot when exported
back to the mosaic (see fig. 1A) to estimate their
distribution among the cellular clusters.

serial bidimensional views of the scatter plot (which, Based on the proportion of magenta pixels per cluster,
in fact is 29-dimensional). The careful observation of we compared the sensitivity and specificity of this sys-
these views revealed the presence of a few areas with tem to identify malignant urothelial cell clusters, creat-
higher data point density, such as the one highlighted ing a receiver operator characteristic (ROG) curve (Fig.
in Figure 2A. These areas of spectral clustering were 4). We found that the highest combined sensitivity and
exported back to the mosaic to evaluate their distri- specificity reached 82% and 81%, respectively, if we as-
bution among the cells. As a general rule, a cell cluster sumed that a cluster was malignant when -> 60% of its
was considered "identified" if it contained three or pixels were magenta (Fig. 4A).
more pixels with spectral profiles from these areas. For To demonstrate that this spectral classification
instance, the area highlighted in Figure 2A identified was not specific to a trivial feature of the small set we
malignant cell clusters exclusively, but not all of them chose for initial analysis, a second mosaic was created
(Fig. 2B). This particular region in the scatter plot with a new set of 15 benign and 15 malignant cell
identified 18 of the 35 malignant cell clusters (51.4%). clusters obtained from 9 urine cytology specimens not

As an alternative approach, the MNF-transformed used in the training set (3 benign and 6 malignant
data were subjected to PPI analysis, resulting in 30 end specimens). This smaller "test set" then was analyzed
members, which correspond to the most spectrally pure using end member 9 as derived from the first mosaic.
pixels (Fig. 3A). These end members were used as refer- The resulting ROC curve is depicted in Figure 4B.
ences to which the vectors from other pixels in the mo- Using the same rule of 60% magenta pixels to classify
saic could be compared using the ENVI SAM function. malignant cells, the highest combined sensitivity and
From these 30 end members, n-dimensional class 9 (in- specificity was 73%, suggesting that this end member
dicated with an arrow in Fig. 3B) resulted in the highest was identifying spectral features associated with ma-
segmentation between the nonneoplastic and urothelial lignancy rather than some other more trivial property
carcinoma cell clusters. Figure 3B shows the spectral of the set of cells in the training set.
relation of every pixel in the mosaic to end member 9
and its distribution in the mosaic. The pixels with more DISCUSSION
spectral similarity to this end member are highlighted in Although spectral imaging technology was designed ini-
grades of pink and appear to be preferentially located in tially for the analysis of satellite images, we have found
the top half, corresponding to the malignant cells. The that the spectroscopic analysis of routinely stained cy-
mosaic was converted to indexed color mode in Adobe tology slides can be highly informative. The results in the
Photoshop by which every pixel in the image can be current study suggest that spectral data alone are capa-
forced into the color categories cyan and magenta. ble of classifying urothelial cells as benign or malignant.
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FIGURE 3. (A) Scatter plot subjected to the purity pixel
index (PPI). End-members are highlighted in different
colors. End-member #9 (magenta) is indicated by an
arrow. B) Spectral angle mapping. Similarities between
every pixel in the mosaic and end-member #9 are
depicted as a pseudo-gradient of pink (smaller spectral
angle) and blue (higher spectral angle) colors (not
shown). Then the mosaic was forced to a three-color
indexed image (magenta, blue and black) using Adobe
Photoshop for quantification.
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FIGURE 4. (A) Receiver operator characteristic (ROC) curve of the first mosaic with end member 9 as the reference data point. For the purpose of generating
the curve, a cluster was classified as malignant when 5-100 % (at 5% intervals) of its pixels were closely related to end member 9. (B) ROC curve of a "test" mosaic
using similar rules for end member 9.

Because "obviously" cytologically benign or malignant mens collected from the routine workload cases from
cells were used for the training and test sets, the spectral different days and different batches of stain, the staining
method is not yet equivalent to conventional spatial/ process appears to be sufficiently homogeneous for
morphologic analysis. Nonetheless, we are encouraged spectral analysis. Therefore, the molecular interactions
by the amount of information obtainable in the corn- that generate the spectral signatures appear to be robust
plete absence of information regarding spatial relations with respect to minor batch-to-batch variations. We
of any given feature to another (such as nuclear size, have not yet tested specimens from other laboratories.
shape, nuclear-to-cytoplasmic ratio, and clustering). Furthermore, the Papanicolaou stain appears to be a

Spectral analysis may be subject to a whole new set spectrally rich choice. An unpublished analysis of a se-
of preparative variables. When a mixture of dyes is used, ries of eight histologic stains performed by our labora-
such as the Papanicolaou stain, the differential binding tory suggested that Papanicolaou, hematoxylin and eo-
to cellular components results in unique spectral pro- sin, and Feulgen stains were the promising candidates
files, depending on the relative amounts of individual for use in spectral imaging.
dyes present and the shifts in spectral properties.'7 How- The optimal method for analysis of spectral data
ever, in our tests of Papanicolaou-stained urine speci- for cytopathology remains to be determined. Visual
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ABSTRACT

Despite low sensitivity (around 60%) cyto-morphologic examination of urine specimens

represents the standard procedure in the diagnosis and follow-up of bladder cancer. Although color

is information-rich, morphologic diagnoses are rendered almost exclusively on the basis of spatial

information. We hypothesized that quantitative assessment of color (more precisely, of spectral

properties) using liquid crystal-based spectral fractionation, combined with genetic algorithm-based

spatial analysis, can improve on the accuracy of traditional cytologic examination. Images of

various cytological specimens were collected every 10 nm from 400 to 700 nm to create an image

stack. The resulting datasets were analyzed using the Los Alamos-developed GENIE package

(GENetic Imagery Exploitation, a hybrid genetic algorithm that segments (classifies) images using

automatically "learned" spatio-spectral features. In an evolutionary fashion, GENIE generates a

series of algorithms or "chromosomes", keeping the one with best fitness with respect to a user

defined training set. When targeted to detect malignant urothelial cells in cytology specimens,

GENIE showed a combined sensitivity and specificity of 85% and 95%, in samples drawn from two

institutions over a span of 4 years. When trained on cells from biopsy-adjudicated specimens

initially diagnosed as "atypical," GENIE showed efficiency superior to the cytopathologist with

respect to predicting the biopsy result. In the future, this method could be used as an ancillary test in

cytopathology, used in a manner analogous to immunostaining, but without any further processing,

since the information is derived from samples stained with the routine Papanicolaou stain. It could

help to provide a more accurate diagnosis in those situations when a definitive diagnosis cannot be

rendered based solely on the cytomorphology.
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INTRODUCTION

Urothelial carcinoma is diagnosed and followed by cytological evaluation of voided urine

and bladder washings(l, 2). The sensitivity of these tests is low, ranging between 60 and 80%.(3, 4).

Non-invasive or low-grade tumors offer an even greater challenge to the cytopathologist(5),

resulting in the use of such terminology as "atypical urothelial cells," leading to suboptimal patient

management(6).

Morphologic diagnoses in cytopathology are primarily driven by spatial relationships, while

color-based information is relegated to a very minor role. This may be because the human eye has

limited spectral resolution, viewing the world in broad, overlapping spectral bands of red, green and

blue. If the spectral properties of cytological specimens are important, this fact can only be assessed

using devices capable of imaging with spectral precision. This excludes conventional red-green-blue

(RGB) cameras, which have no more spectral resolving power than the human visual system they are

designed to emulate. Spectral imaging, on the other hand, is a relatively novel technique capable of

quantitatively measuring optical spectra on a pixel-by-pixel basis, and therefore capturing

differences normally overlooked by the human eye(7). Previous studies have shown that spectral

analysis has high information content, albeit less than spatial information(8). Thus, combination of

spectral imaging with spatial analysis (morphology) could maximize information obtainable from

routine pathology slides and could serve as a valuable ancillary test in diagnostic pathology.

GENetic Imagery Exploitation or "GENIE," is a recently developed artificial intelligence

platform that allows optimization of images analysis algorithms through selection of learned spatio-

spectral features(9). This system was originally conceived at Los Alamos National Laboratory for

the analysis of satellite images of the surface of the earth(10). GENIE is a hybrid learning system

that combines a genetic algorithm that searches in a space of image-processing operations for a set
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that can produce suitable feature planes, coupled to a more conventional classifier that uses those

features planes to output a final classification. In an evolutionary fashion, GENIE generates a series

of mathematical algorithms or "chromosomes", and assigns an individual fitness score related to

how well they classify a set of training images. Each chromosome is composed of a variable number

of mathematical operators or "genes" that are interpreted serially. At the end of each generation,

GENIE selects chromosomes to participate in processes of crossover and mutation, with the

probability of selection being based on their fitness, and the cycle is repeated. When compared to

other supervised classifiers for multispectral image feature analysis, GENIE out-performed them all

in almost every task tested, indicating higher sensitivity and generalization abilities(1 1).

Here, we first applied the GENIE hybrid genetic algorithm to multispectral images obtained

from artificially produced Papanicolaou-stained cytology slides, to test its capabilities to detect

malignant cells. Then, we extended our study to routine urine cytology slides from different time-

periods and separate institutions. Finally, we tested its performance on biopsy-adjudicated clinical

specimens initially called "atypical" by the cytopathologist, to test its potential value as an ancillary

test to increase the accuracy of cytopathology.
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METHODS

Preparation of cytology specimen of defined composition: Colon adenocarcinoma cells and

normal colonic epithelial cells were manually scraped from the surface of a fresh colon resection

specimen received at the Department of Pathology at Yale. The scraped material was immediately

suspended in RPMI medium and gently dispersed using a glass Dounce homogenizer. Cell count

was performed using a hemocytometer. Aliquots from each suspension were mixed in 11

ThinPrepTM vials containing 20 ml of PreservCyt® preservative at different malignant/benign cell

ratios, and total cell concentration of lx105/ml. A ThinPrepTM slide was prepared from each vial in a

2000 ThinPrepTM processor (Cytyc, Boxborough, Massachusetts), and stained with Papanicolaou

stain. Random areas containing cells or cell clusters were selected for image acquisition.

Urine cytology specimen selection: Papanicolaou-stained urine cytology ThinPrepTM slides were

collected from archival material at the Departments of Pathology of Yale-New Haven Hospital and

University of Massachusetts Medical School. Representative areas containing benign, atypical or

malignant urothelial cells were selected by a cytopathologist for image data acquisition.

Data collection: Multispectral images (400 X) were acquired from selected areas of the cytology

slides at 420 nm to 700 nm (10-nm intervals) using a BH-2 Olympus light microscope (Olympus

America, Melville, New York) equipped with a CRI VariSpec TM and VIS2-CM liquid crystal tunable

filter (CRI, Woburn MA). The tunable filter was coupled to a Retiga 1300 monochrome CCD

camera (Quantitative Imaging, Burnaby, British Columbia). Both CCD camera and VariSpec were

controlled by CRI acquisition software (CRI, Woburn, Massachusetts). Exposure time for each slide

and wavelength was calculated prior to each acquisition. Background information was subtracted by
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acquiring an area with no cells (one per slide) and flat-fielding over the area of interest. Digital

images were produced as arrays of 896 by 768 pixels at 8-bit resolution.

GENIE training and "chromosome" generation: Training image data was introduced into the

GENIE analysis by means of the ALADDIN Java-based graphic tool. ALADDIN allows the analyst

to select areas to be considered in the training session as "feature" and "non-feature" by manually

painting those areas as a colored overlay (green and red, respectively). The learning system

parameters can be modified in terms of number of chromosomes per generation, maximum number

of genes in each algorithm, number of generation cycles, mutation rate, recombination rate, and end-

point fitness goal.

Detection of malignant cells using GENIE "chromosomes:" Multispectral image data from the

test sets was subjected to mathematical transformation by means of algorithms (chromosomes)

previously generated in the training process. The modified result images could be viewed as green

(feature) and red (non-feature) areas overlying the original images (used for orientation purposes), or

as black-white binary images (used for scoring purposes). Scoring of the GENIE result images was

done by calculating the GENIE Index values, which represents the proportion of pixels inside the

object of study (nuclei, cell, cluster, etc) recognized as "feature." ROC curves were constructed on

Excel Analyze-it® software (Leeds, England). Combined sensitivity and specificity were calculated

using increasing levels of GENIE Index as cut off values.
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RESULTS

Detection of malignant cells in defined-composition cytology specimens

The first analysis was done to determine if this technology could define cancer cells from

normal cells, in a system free of pathologist interpretation. Colon adenocarcinoma and benign

colonic epithelial cells were scraped from two separate areas of a colectomy specimen, and mixed in

preservative at various concentrations. From each mixture, one ThinPrepTM slide was prepared, and

all slides were stained together using the Papanicolaou stain. GENIE training was performed using 5

high-power (40X) multispectral images (420 to 700 nm, 10 nm intervals) of the slides prepared from

the vials containing 0% and 100% tumor cells. Training data was created by manually marking the

cells in images in red (for "non-feature" or benign) and green (for "feature" or malignant). 300

generations were run under specific training conditions (Supplementary Note 1). A chromosome was

generated (# 004345), with a fitness with respect to the training set of 835 (a score of 1000 would be

consistent with every pixel in the training data correctly classified). Twenty multispectral test images

acquired from every slide were run in GENIE using chromosome #004345. The results showed most

of the pixels corresponding to tumor cells clearly identified as "feature" (green color overlaying the

original images), while those corresponding to benign colonic epithelial cells were ignored (red

color, see Fig. 1 a). In a separate training session, we created another chromosome that identifies

background areas by manually indicating areas of background as "feature," while any cell (benign

and malignant) was indicated as "non-feature." We combined the results of both chromosomes so as

to mask the background, and exclusively score the results on cell-associated pixels. This was

necessary because: 1) chromosome #04345 was trained with spectro-spatial information from cell-

associated areas only, so it should be evaluated on that same substrate; 2) the surface occupied by

cells was variable between images. The scoring was done by calculating the proportion of pixels

7



Spectral-Spatial Analysis of Urine Cytology Angeletti et al, 2005

recognized as "tumor" in the total cell surface of the images (GENIE Index). The average GENIE

index obtained for each ThinPrepTM slide increased linearly according to the percentage of tumor

cells in the original suspensions, with a correlation coefficient of 0.84 (Fig.lb). Note that the

adhesive quality of the cells and subsequent clustering made it impossible to get homogeneous

dispersions on the slides, partially limiting the ability to evaluate this assay. The accuracy of this

assay could have been improved by using more training images, but having proved the concept, we

moved on to actual cytology specimens.

Detection of malignant urothelial cells in routine urine cytology specimens

To create a chromosome able to detect malignant urothelial cells in routine urine specimens,

we trained GENIE with 12 Papanicolaou stained ThinPrepTM urine cytology slides received in the

Department of Pathology at Yale-New Haven Hospital between 1996 and 1997. From these slides,

38 high-power multispectral images were acquired and imported into the GENIE platform. 161

nuclei from benign urothelial cells and 70 nuclei from malignantfurothelial cells were selected by'a

cytopathologist as "non-feature" and "feature," respectively. Cells showing atypia, but lacking

definitive features of malignancy, as well as inflammatory cells and degenerated urothelial cells,

were not selected. The training conditions used are listed in Supplementary Note 2. GENIE produced

a single best chromosome, #025867, containing four genes, which was evaluated on two validation

sets. The first set was constructed from 17 unique patients' slides with a diagnosis of urothelial

carcinoma received in the Department of Pathology at Yale New Haven Hospital between 1998 and

1999. The set contained a total of 190 benign urothelial cells and 178 malignant urothelial cells.

GENIE identified malignant cells by overlaying green color over their nuclear areas (Fig. 2 center

column). Using 90% of the nuclear area being identified as "feature" as the cut-off value, this

chromosome classified malignant and benign urothelial cells with a sensitivity and specificity of
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87% and 96%. The selection of 90% as the cut off value for nuclear area was arbitrary and could be

optimized for even more accurate scoring in the future. It was selected here to be a conservative

example for illustration. Atypical or degenerate cells were not used in the calculation, since they

were excluded from the training set. Inflammatory cells were also excluded; however this

chromosome did not identify neutrophils as "feature."

The second validation set was composed of eight cases (6 positive for urothelial carcinoma

and two negative for malignancy) from the Department of Pathology at University of Massachusetts

Medical School. The Papanicolaou staining procedure routinely used at both institutions is similar

(see Methods section). This test set comprised 121 benign urothelial cells and 40 malignant

urothelial cells. Chromosome #025867 demonstrated a sensitivity and specificity of 85% and 96%.

Finally, to test the importance of the spectral information in this chromosome we altered it in

a fashion analogous to a transposition mutation where information from two spectral data planes was

exchanged. Specifically, the mathematical operator that used a 550 nm plane was given the 570 nm

plane and vice versa. Under these new conditions, Chromosome #025867 misclassified several

benign nuclei as malignant (Fig 2, right column), further illustrating the critical nature of the spectral

component of the analysis.

Detection of malignant urothelial cells in "atypical" urine cytology specimens

Adjudication of cases defined as "atypical" represents a critical challenge for pathologists

and a potential clinical application of this technology. To investigate this possibility further, we

selected sixteen unique urine cytology cases initially diagnosed as "atypical" by a cytopathologist

and received at Yale-New Haven Hospital between 1995 and 1996. Eight slides (negative follow-up

group) corresponded to cases that had at least one specimen subsequent to the index case where the

cytology, biopsy or surgical specimen was diagnosed as "negative for malignancy" in the following
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year. Cases were excluded if subsequent specimens included "atypical", "suspicious" or "positive

for malignant cells" in the diagnostic text. The other eight (positive follow-up group) had least a one

specimen subsequent to the index case where the biopsy or surgical specimen was called "positive

for malignant cells" in the following year. A single image containing the most atypical cell cluster

was used for each case. Areas corresponding to the atypical clusters of the "follow-up positive

group" were manually designated as "feature", while the ones of "follow- up negative group" as

"non-feature." The training conditions used were similar to those used for chromosome #025867

(see above and supplemental materials). In this way, chromosome #026897 was generated. The

fitness of this chromosome with respect to the training set was 824. We then prepared a completely

unique validation set using images from 34 "negative follow-up" and 51 "positive follow-up" urine

cytology cases from archival material received between 1997 and 2002. The criteria used in the

selection of cases were similar to those for the training set. One atypical cell cluster per slide was

selected for acquisition and each sample corresponded to a different patient. Scoring was done by

calculation of the GENIE index in each cell cluster alone. The results are shown as a frequency

distribution of GENIE index scores (Figure 3a-b). The positive follow-up group shows a

significantly higher mean score than the negative follow-up. There is no cut-point that definitively

separated the groups, but an ROC (Receiver Operator Characteristic) curve could be generated based

on the number of pixels per cell cluster used to define a positive identification. The area under the

ROC curve (AUC) obtained was 0.728 (Fig 4).

We attempted to improve the performance of GENIE on atypical urine cytology cases by re-

training the system using a larger number of training images (32 cases, including those used in the

previous training session). The assumption was that by increasing the number of training images,

GENIE would generate a "smarter" chromosome capable of recognizing larger number of
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classificatory features. Using this strategy, the resulting chromosome, #020105, had a lower fitness

with respect to the training set of 732. However, when this chromosome was run on the test set, it

performed better compared to # 026897 (Fig 3c-d), with an area under the ROC curve of 0.784 (Fig

4).

DISCUSSION

GENetic Imagery Exploitation, or "GENIE," is a newly developed artificial intelligence

system that performs spatio-spectral analysis of images. This is in contrast to a long history of

quantitative analysis systems tested on urine specimens which all have used spatial information, and

monochromatic (or panchromatic) optical density(12-15). While some showed promising results,

none have been widely adopted due to their inability to definitively improve on the current, manual,

standard. GENIE uses spectral data to increase the total information content. Our previous work (8)

and the "mutagenesis" experiments above illustrate the value of this additional information. Note

that the colors selected by GENIE are from a range of 18 wavelengths and are not those that would

create a standard RGB (red-green-blue) image. The fact that certain wavelengths are more

informative than others suggests subtleties in protein-dye interactions that are impossible to

appreciate with the human eye.

A critical difficulty in the work is to compare the objective results of the GENIE analysis to

the subjective results of the pathologist. When confronted with urine cytology cases classified as

"atypical" by the cytopathologist, GENIE produced a chromosome with a combined sensitivity and

specificity of approximately 70% (area under the ROC curve of 0.72) when tested on a cohort of 85

patients. It is difficult to compare the AUC since sensitivity and specificity cannot be calculated

from a diagnosis of "atypical". An AUC could be calculated for the pathologist by repeated analysis
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with forced selection of a positive or negative diagnosis, but this was not done since our goal was to

compare GENIE to a "real life" situation. Moreover, while the pathologist's report was generated

looking at the whole slide, the GENIE "diagnosis" was based on one single cluster per slide. By

doubling the number of training images in a new training session, we generated a chromosome that

showed higher sensitivity and specificity on the same test set (area under the ROC curve of 0.78).

This suggests that future efforts that include more cells or even the whole slide in training sets may

substantially improve the AUC even in this difficult class of cases.

A further limitation of this initial analysis is our using of a single chromosome to identify

only positive events. Future studies are underway to use multiple chromosomes where some are

trained on other subclasses of cells that can be used to eliminate false positive identifications. For

example GENIE could be trained on benign parabasal or umbrella cells and then these chromosomes

could be combined in a subtractive manner to determine an ultimate score. Combining algorithms

trained to identify more restricted features, and integrating them through a higher order "cognizant"

chromosome (incorporating abstract thinking or data fusion) represents an area of intensive research

in modem computational analysis of remote sensing data(16). We have begun applying this concept

on cytology samples in new studies in order to evaluate its clinical potential.
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LEGENDS TO FIGURES

Figure 1. a)Detection of malignant cells in cytology specimens of defined composition using

GENIE. GENIE results are displayed on the right as binary green (feature) and red (non-feature)

images, superimposed to the original image (which is better appreciated on the left). A-D. Testing

images taken from the slide containing no colon adenocarcinoma cells. E-H. Testing images from

the 100 % colon adenocarcinoma slide. b) Quantification of malignant colonic epithelial cells in

mixtures of defined composition. Every data point is the average of 20 high-power field (400X) from

each slide, which was prepared from vials containing a defined proportion of malignant cells.

Figure 2. Detection of malignant urothelial cells in routine urine cytology slides using GENIE.

Original images are displayed on the left side of the figure. The center column corresponds to

GENIE result images using chromosome #04345. This chromosome identifies nuclei of urothelial

carcinoma cells by overlaying green color over its surface. The right column shows the performance

of chromosome #04345 when spectral data planes D13 and DI 5 are switched (in an analogous

fashion to transposition mutation).

Figure 3. GENIE detection of malignancy in routine urine cytology slides previously diagnosed as

"atypical" by a cytopathologist. A. Results obtained with chromosome #026897 on atypical urine

cytology cases with follow up negative. B. Results obtained with chromosome #026897 on atypical

cases with follow up positive. C. Results obtained with chromosome #020105 on atypical cases with

follow up negative. D. Results obtained with chromosome #020105 on atypical cases with follow up

positive.
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Figure 4. Detection of malignancy in routine cytology slides previously diagnosed as "atypical by a

cytopathologist. ROC curve for results obtained with chromosomes #025867 and #026897. Cut-off

values are represented by GENIE Index values (proportion of pixels identified as feature) in the cell

cluster.
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